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INTRODUCTION

This aticle is the third in a series of papers concerning the importance of smulation code
vdidation to the US Depatment of Energy Accderated Strategic Computing Initiative
(ASCI) program [1]. The series started with a review by John Garcia of the criticd need for
advanced vdidation techniques in the ASCI program, which was crested to make up for the
absence of nudear teding through the use of smulation codes. ~ Without tedting, the
dmulation codes must be adle to answver criticd quesions about the rdigbility of our aging
stockpile of wegpons. In the second paper, Bill Oberkampf gave an overview of vaidaion
concepts and described the requirements for a well-executed vaidaion experiment. In this
atice we discuss the andyss of data obtaned from vdidaion experiments ad motivete the
use of uncetanties to quantify the accuracy of predictions made by smuldion codes This
work represents merdly a smdl fraction of the numerous verification and vdidation projects
currently being conducted a the DOE Nationd Laboratories and & severd universties under
the auspices of the ASCI program.

Enginears routindy use smulaion codes to andyze and desgn criticd Sructures and devices
Because public safety is often involved, confidence in the predictions made by sSmulaion
codes is cealy of paramount interes. An engineer needs to be confident that when used in
an gppropriate way, a smulation code will predict the behavior of the sysem under study to a
goecified degree of accuracy. The god in vaidaing a smulaion code is to determine the
degree to which the output of the code agrees with the actud behavior of a physicd system in
a ecified gdtudion. Because the criterion is red-world behavior, vdidaion mus involve
comparison of the smulaion code s output to experimenta results.

Uncertainties in a quantity are described in terms of a probability dendty function (pdf) thet
specifies the probability of dl possble vadues of that quantify. In this context, probability is
used as the quantitative measure of our degree of bdief, which summarizes our knowledge
about a paticular dtuation [2]. We use the Monte Calo technique to meke this kind of
probabiligic andyss more tagible as wdl a to obtan quatitaive esimaes of
uncertainties.

We will discuss the andyss of vaidation experiments, the role of uncertainties in materid
modds, and in experimentd conditions. From the viewpoint of uncertainties, inference about
how wel a dgmulaion code can predict physcd phenomena is limited not only by the
uncertanties in the rdevant measurements, but aso by how wdl the conditions of the
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experiment are controlled, messured, and documented. We mention the posshilities for
inferring  unmessured  quantities, induding the parameters i maeid modes  from
comparisons to experiment. The ultimate god of vdidation might be to have a smulaion
code assign uncertainties to its output.

MONTE CARLO CALCULATIONS

The bass of the Monte Carlo technique is to represent a defined probability dengity function
(pdf) in terms of random samples drawvn from the pdf. The underlying idea is to randomly
pick values of a parameter such that the hisogram of chosen values gpproximates the pdf.
Suppose that a pdf is soecified as a normd (Gaussian) digtribution with a mean vaue of 100
and rms devidion of 10. Using a dandard dgorithm for drawing random numbers from such
a didribution, we might get the following sequence of numbers, 104, 97, 89, 112, ¥4, dc.
Figure 1 shows the histogram of the values from such arandom sequence. As the number of
random numbers increeses, the hisogram looks more and more like the specified normd
digribution.
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Figure 1. The frequency hisogram of a sat of 100 random numbers drawn from a norma
pdf, shown as the dashed line.

In Monte Carlo, the degree of variahility in the vaues of a set of random numbers reflects the
width of the underlying pdf. Since the random samples mimic the pdf, its characteristics may

be edimated from the samples Thus the mean and rms deviation of the pdf are
goproximately given by the mean and rms deviation of the set of random samples.

As we shdl see in the next section, the pdf that describes the uncertainty in the quantity of
interes may not be explicitly known. In fact, the red power of the Monte Carlo technique is
that it can provide quantitaive edimates of the uncertanties in a complex function of
uncertain variables, so long as the function can be computed.
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UNCERTAINTIESIN SIM ULATION PREDICTIONS

Figure 2 shows how we think about $mulations of dynamic phenomena  The smulaion code
requires that the dtuation be fully and explicitly specified. Thus, the code requires as input
the propeties of the materids involved over the range of conditions encountered in the
experiment and the initid date of the sygem. Even though the diagram shows input from
only one modd of materid behavior, more complicated Stuations could obvioudy reguire the
input of modds for saverd maerids.  Boundary conditions may be thought of as being
induded in the initid-State specification. The god of the smulation code is to predict the
behavior of the system at later times.

For smplicity, we consder only determinigtic phenomena in which the stae of the system a
later times is uniquely deermined by the initid State and materia behavior. However, chaotic
or sochadtic phenomena can dso be handled by the present gpproach.

Initial State Dynamic State

{Y (0)} {Y(®}

———» Simulation ——»

Material
Behavior

{a}

Figure 2. The purpose of a smulaion code is to cdculae the dynamic Sate of a system from
a secified initid date and the defined behavior of the materids involved, represented by the
parameter vector a. Uncertainties in the initid state and maerid modds, sgnified here by
braces, may be propagated through the smulation code to obtain uncertainties in the code
predictions.

Vdiddion is based on comparing the experimenta messurements with the predictions made
by a dmulaion code for that specific experiment. If we think about the experimenta
counterpart to the smuation depicted in FHg. 2, we redize that each input to the code is to
some degree uncertain.  Therefore, we should associate with each input varigble a pdf thet
describes our uncertainty in its vaue. The properties of the maerid may be uncertain for a
number of reasons, for example, because the exact compostion and preparaion of the
materid used in the experiment are not known. Uncerttainties can dso arise because of
vaidility in the maerid characteridics such as vaiations in gran dructure that aise in
oecimen preparaion, which may not be adequately controlled or measured.  Also important
in specifying an experimenta set up is the degree of uncertainty in the initid Sete, described
intermsof itsgeometry, initid velocities, meterials, etc.
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The Monte Calo technique provides a way to edimate the uncertainties in the smulaion
output that arise from uncertainties in the inputs to the Imulaion code. To do this the
parameters that describe the initid conditions and the maerid behavior are drawn from the
pdfs that describe our uncertainties in them. Braces are used in Fig. 2 to indicate that the
quantities are uncertain.  The variahility in the output dates of the Smulaion obtained for the
st of random input vaues represents the uncertainty in Smulaion predictions.  In this way, it
is relatively essy to propagate uncertainties in inputs through a smulation code, a process thet
is cdled forward propagetion of uncertainties.

EXAMPLE —-THE TAYLOR IMPACT TEST

The Taylor impect tes condsts of impacting a cylindricd sample of materid agangt a fixed,
rigid surface, as depicted in Fig. 3. Taylor tests are often peformed to investigate materia
behavior a high dress and high drain rates.  Extremdy high plagic drains devdop a the
cushed end of the rod, resulting in severe locd deformation.  The type of experimentd
meesurements typicaly performed range from smply measuring the initid and find radii or
lengths of the deformed cylinder, to a full specification of its profile.  When the cylinder is
composed of an anisotropic medium, the deformation may not be axidly symmetric and these
measurements would be made a severd polar angles. In some cases, the strain on the surface
of the deformed cylinder might be measured. These measurements can be used for validating

materid and fracture modds developed by physiciss and materid scientiss[3, 4].

L

Figure 3. In the Taylor impact test, a cylinder is thrown with high velocity nto a fixed, rigid
plate (Ieft) producing a significant permanent deformation in the rebounded cylinder (right).
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For our numerica example, the cylinder is assumed to be made of a high-strength sted, 15
mm in diameter and 38-mm long. The impact velocity is 350 meters-per-second. Because
large plagtic deformations and dtrain rates in excess of 10™ second™ are expected, plasticity
and dran-rate dependence mugt be included in the sressdrain modd. We use the Johnsont
Cook modd for rate-dependent pladticity:

é &
s =(a, +a2ey)§|-+a3|09§ﬂi@ ' @
E T &

where e, and s denote the equivalent pladtic strain and resulting Stress, respectively.  The
parameters a1, az, a3 and N are materid specific.  For simplicity, we are not induding
anisotropies in the maerid behavior and have assumed thet the test is conducted a ambient
temperature.  Furthermore, dthough the Johnson-Cook mode can incorporate fracture, thet is
not induded in this smulaion.

Our analyss is peformed with Abagus, a generd-purpose finite-dement modding and
andyss package, which employs explicit time integration [5].  The nomind materid
condants are chosen to be a; = 760 MPa, a, = 400 MPa, a3z = 0011, and N = 0.26,
representative of a high-drength sted.  The modulus of dadticity is E = 310 GPa and the
materid densty, ? = 7,750 kg/nT.  Under these conditions, Abagus predicts the shape and
grain vaues shown in Fig. 4. The result a 50 microseconds represents the find defarmed
date of the cylinder.
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Figure 4. Smulaion of the Taylor test described in the text. The figures show the half-
cylinder shgpes a times of 0 ns, 17 ng 33 ng and 50 ns after impact (from left to right).
Ther equivdent-gtrain paterns vary from 0% (dark blue) to maximum strains of 83%, 165%,
and 248% (red) for the last three shapes, respectively.

UNCERTAINTIESIN THE SSIMULATION OF THE TAYLOR TEST

We use the Monte Calo technique to illusrate the forward propagation of uncertainty
through the smulaion code  We conddea a hypotheticd gStuation in which the only
parameters that are uncertain are those in the above sress-strain modd (1). We assume that
the uncertainty didribution in each parameter is given by a normd didribuion with the mean
vadues st equd to the nomind vaues given above We abitraily choose the rdaive
sandard deviationsinay, a, as, and N to be 20%, 20%, 30%, and 40%, respectively.

As indicated above, the Monte Carlo process conssts of sampling parameter vaues from the
assumed uncertainty didributions and running the sSmulation code for each st of vaues
This procedure for uncertainty propagetion can therefore be viewed as nothing more than
multiple runs of a determinigtic computer program. Figure 5 shows the results of employing
this process to generate sx find profiles  The results from only sx Monte Carlo runs are
shown to avoid the confusion of plotting too many profiles on the same figure.  The observed
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vaidion in shape can be interpreted as indicative of the uncertainty in profile that is produced
by the assumed uncertainty in the plagic dressdrain reation. We observe that the largest
vaiability in radius, and hence largest uncertainty, seems to occur a the contact end of the
cylinder.  Of course, a quantitatively accurate charecterization of the uncertainties in
gmulation output requires many more than Six redizations.
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Figure 5. Sx representaive Taylor-tes profiles for the sted cylinder predicted in a short
Monte Carlo run in which there is a high degree of uncertainty in its plagic behavior. The
vaidlity in thexe profiles indicaes the degree of ther uncetanty aisng from the
uncertainties in the stressstrain curve for the materid.

To illusrate the ability of the Monte Calo technique to obtan quantitative uncertainty
edimates, we extend the above Monte Carlo cdculaion to indude 1,000 smulaion runs We
assume that the only messurement made is the radius a the base of the deformed cylinder.
Figure 6 shows the higogram of the raio of the find radius to initid radius, RR,,  The mean
vadue of this didgribution is 206. Because the didribution in Fig. 6 represents the uncertainty
in RR, in our hypotheticd dtuation, the rms deviaion of the didribution, 0.14, is our
esimate of the standard devidion in the uncertainty of our prediction for R/R.. We observe
tha this higogran does not gopear to be normdly digributed, which should come as no
surprise because the numerica smulation of this phenomenon is highly nonlineer.
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Figure 6. Higogram of the ratio of the radius a the base of the deformed cylinder to its
initid vaue obtained from a Monte Carlo run of 1,000 smulaions. This hisogram represents
the uncetanty in R/Ro coming from the assumed uncertainties in the plagic dress-drain
behavior.

By redricting our atention to a scdar quantity, RIR,, we have greatly smplified how we
digplay and quote the uncertainties involved. The same 1,000 dmulations have associaed
with them uncertainties in every aspect of ther time-dependent predictions. Thus, we could
have chosen to measure the deformed cylinder profiles.  Then the prediction uncertainties
would be smilar to those presented in Fg. 5, but now for 1,000 samples. The uncertainties in
the profile could be presented in terms of the mean vaues and rms deviation in radius as a
function of digance dong the axis, z A new complication is introduced, however, because
the uncertainties a one z podtion are daidicdly corrdaed with those & another postion.
The undelying datisicd corrdation is evidenced by the smoothness in the profiles in Fg. 5,
which essentidly indicates that the predicted radius cannot change abruptly from one z vaue
to the next. It is criticaly important to teke into account this corrdation in the datidtica
andyss of this experiment [6]. Even mare difficult would be to try to characterize the
uncertaintiesin the full grain field, which is predicted by the smulation, as shown in Fg. 4.

Despite these complications, the Monte Carlo technique provides an easy way to visudize the
naure of the uncertainties in the code predictions. One only has to view the rdevant festures
in the code output for a sequence of Monte Carlo Smulations.

These condderations, as well as practicd issues, have led researchers to try to reduce the
number of varigbles that need to be consdered, both in terms of inputs and outputs from a
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gmulation code. The use of metamodds or response surfaces represents this approach, which
is often useful in deding with complex modding dtuations [7, 8. However, as we will
discuss beow, it may be useful in some Studions to think about uncertainties in the broader
context of the full Smulation.

We have ignored the potentid uncertainties in the experimentd st up. These ae readily
induded in the Monte Carlo technique. For example, to include the uncertainty in the impect
veocty, a fifth random vaiade v representing the impact velocity can be induded in the
input parameter vector @1, @&, as, N, V). By drawing random samples for v from its pdf, the
effects of uncertainties in v can easily be incdluded in the Monte Carlo uncertainty caculation.
Other uncertainties in the experimentd dtuation can be smilarly incorporated. This ggroach
to assessing the consequences of uncertainties in the experimentad conditions provides a good
bass for desgning vaidation experiments, for example, as discussed in Ref. [9] for dructurd
dynamics gpplications.

There are other sources of uncertainties regarding the materid that ought to be kept in mind.
For example, the maerid properties might not be uniform. If the dendty were thought to be
vaigble throughout a specimen, that uncertanty could be incduded in the Monte Calo
cdculation. We assumed the materiad properties to be isotropic, which may not be the case.
For a new materid for which we have no information about its anisotropic characteridtics, this
uncertainty ought to be incduded in the Monte Carlo cdculations, if indeed the smulaion
code can take them into accourt.

Ancther source of uncertainty in the output from a amulation code is the inadequacy of the
code to indude certain kinds of detals in the experimenta dtuation. For example, the finite
eements may not be smal enough to permit the engineer to include features such as welds or
fagteners in the computer representation of the structure being modeled. These detals might
be goproximated in the modd or neglected dl together. Mesh sze is often thought of as an
issue of veification, that is the degree to which the code solves the physics equaions
correctly. However, snce this and other verification issues can be an important source of
uncertainties in code predictions, thelr effects need to be consdered and accounted for in the
validation process

For this example the Monte Carlo cdculaion is handled usng a soripting language thet
dlows one to run a smulation code (such as Abagus) with controlled input parameters and to
summarize the output data. The scripting language used here is Python [10].  Ancther
posshility would be to use a commercid code such as NESSUS [11], which has been
developed for rdiability andyds of dructurd mechanics gpplications.  Other generd-purpose
goplictions are being deveoped for the forward propagation of uncertainty, characterizaion
of output probability information, and inference concerning the paameter vdues  One
exampleisthe DAKOTA toolkit under development a the Sandia Nationd Laboratories [12].

COMPARISON OF SSIMULATION CODE WITH EXPERIMENT

The bass of vdidaion is the comparison of experimentd measurements with a smulaion
code In tha comparison, it is important that the conditions put into the smulaion code
accuratdy maich those of the experiment. The degree of accuracy that one can quote for the
gmulation is limited by the combined uncertainties in the messurements and the uncertainties
in the predictions made by the code that arise from uncertainties in the experimenta st up.  If
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the prediction matches the measurements to within this combined uncertainty, we can say the
smulation code has been vdidaed to the combined uncetainty. The fact that the
uncertainties in the experimenta conditions are important was dluded to by Oberkampf in the
previous atide in this series [1]. In his Guiddine 2 he cautioned that in a properly conducted
vdiddion experiment, the expeimenta conditions <should be wdl controlled and
documented.

Because the god to determine the degree to which the output of the code agrees with redlity,
the comparison of the smulation code results to experimenta measurements needs to be done
in a quantitative manner. The firs quegtion to be answered is, “How wel does the prediction
agree with the measurements?” Then we want to state to what degree the accuracy of the
code prediction has been confirmed. Both of these quesions can be addressed in a
quantitative way with the t test or some other appropriate statistical means for comparing two
probability digributions [13]. As indicaed in the preceding paragraph, the uncertainties in
code output that arise from uncertainties in the experimenta conditions and set up must be
included in this comparison.

The t teg is vdid only then the pdfs ae normd digributions We saw in Fig. 6 tha the
uncertainty in Smulaion output may not be normaly disributed. In thet case the t test cannot
be legitimately used and a suitable dternative needs to be employed. As mentioned before,
another issue to be consdered when there are two or more measurements is whether there are
corrdatiions among the uncertainties in the sImulaion predictions for those messurements.
Corrdations may dso exis among the expeimentd measurements, for example, through
sysemdtic uncertainties These would dso have to be quantified and accounted for [13].
These cavests indicate that one must carefully assess the appropriateness of the t test in any

specific gpplication.

Under suitable conditions, it should be possble to use the comparison of the experimenta
results of a vdidation expeiment with the output from a Smulaion code to gan informetion
about the models used in the code.  When this process is employed to st the vaues of the
modd parameters, it is often cdled cdibration, which is different from how we ae usng the
term vadidation [1]. In that case it is questionable whether the same experiments may be
employed to subsequently vdidate the code, in the sense of assessng the accuracy of its
predictions. Howewr, if a full uncetanty andyds is employed in this parameter-updating
process, the process becomes one of inference [14]. In a sense the Monte Carlo technique for
edimating uncertanties in sSmulaioncode output described aove is reversed and the
uncertainties in the parameters are determined from the combined uncertainties in the
measurements and the effects on the smulaion of uncertainties in experimental set up. Since
the inference process involves determining the uncertainties in modd parameters, we contend
that it offers the possbility of predicting the uncertainty in Smulation output. Thus, inference
brings us doser to reaching the ultimate god of validation.

INFERENCE ABOUT PHYSICSMODELSFROM EXPERIMENTS

If a amulation code has been vdidated with a series of experiments, how much can we say
about the physicd variables predicted by the smulation that have not been directly measured?
For example, in the Taylor test, how well can we rely on the maximum gtress predicted by the
gmulation? Since we have not directly measured the dress, we might conclude that the
smulaion could not be relied on. On the other hand, if the code did predict the find shepe to
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some degree of accuracy, it seems ressonable that the predicted dress might dso be
believable to some degree. It is dearly important to undersand to what extent this type of
inference can be made. Structura engineers need to know how much they can rely on the
dresses cdculated by FEM codes in order to be confident in the integrity of ther designs.
These concerns may be addressed using a mode-based gpproach to understanding smulation
uncertainty.

Modd-based smulation codes are based on our view of how things work. Such codes are
usudly congdructed on the bads of physicd principles or laws and incorporate the behavior of
materids through conditutive models.  When experimentd data are found to agree with code
predictions, we tend to view tha as a confirmation tha we undersand the phenomenon
involved.  Our hope is that the dmulation code is robust to changes in the experimenta
conditions with respect to changes in geometry, maeias and operating conditions.  This
hope forms the foundation of smulaion science, but is perhgps the mogt difficult aspect with
which to cometo grips and say anything about quantitatively.

Condder the hierarchy of experiments shown in Fig. 7. The leved of integration is based on
the number of physcs modds needed to describe each experiment.  The nomenclaure is
dightly different from that used by Oberkampf [1], but the intent is Smilar. Idedly, one
leerns aout the individud physcs modds used in a dmulaion code through besic
experiments, which are desgned to isolae and characterize eech physcs modd. Then by
doing more and more complicated experiments, one can learn more about the physics modds
by extending the range of physcd conditions probed and dso aout possble interactions
between different individud modds eg., involving different maerids.  Experiments 1, 3,
and 4 ae conddered to be basc expaiments because they involve only the individud
materiad models represented by the parameter vectors a, g, and d, respectivey. Experiment 2
is patidly integrated because it involves two models, represented by a and b. Experiment 5
isfully integrated in this scenario because it involves dl four models[6].
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Figure 7. Diagram of the conceptud process for combining informetion from severd
experiments conducted for a hierarchy of experiments involving various levels of integration.
Four underlying physics modes, represented here by the parameter vectors a, b, g ad d, are
required to account for the behavior of the fully integrated system.

Figure 7 is meant to capture the way knowledge about the physcs modes flows from the
andyss of experiments & one levd to the next. Reference [6] suggests that this knowledge
may be quantitatively specified by the uncertainty digributions in the parameter vectors a, b,
g ad d. Furthermore, Bayes lav may be used in each bubble to update our knowledge of the
physcs modds. Thus Fg. 7 is a probabilisic network in which probabilities flow between
nodes and are updated in each node on the bass of new experimentd information. From this
perspective, it gopears feasble to sysematicdly incorporate the informetion from dl the
expeiments into a condsent set of parameters for the modes involved. Because this
goproach is grounded in quantitative uncertainty assessment, the uncertainties in Smulation
predicions may be cdculaed through the Monte Carlo procedure described above
Additiondly, we should be ale to efectivdy address concans about the uncertanties in
inferred quantities that not been directly measured.

CONCLUSION

We have presented the viewpoint that uncertainties in predictions made by smulation codes
should be the bess for code vdidaion. The firs place to look for uncertainties in Smuléaion
code output are the uncertainties in the physcs modds that are incorporated in the smulation
code. The Monte Carlo technique may be used to propagate uncertainties in the modds into
uncertainties in the code's predictions. Other sources of output uncertainties to condder
include the numericd implementation of the physcs modds especidly the finite sze of the
finite dements, and aspects of the physics that are not accounted for. We point out that
vaidation experiments may be used in an inference process to improve our understanding of
the physcs modds, which is legitimately ceptured in terms of modetparameter uncertainties.
This line of reasoning underscores the importance of conducting vaidaion experiments that
are thoughtfully desgned to provide results that can be quantitativey compared to smulation
codes.
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These kinds of vdidation issues have been raised by the ASCI program, which was crested to
meke up for the absence of nudear testing through the use of computationd modds.
However, they apply to al goplication areas in which people rdy on smulations for decisons
or design.
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